The aim of this work was to investigate the role of biochemical digestion on softening and disintegration kinetics of pH 5 and pH 9 egg white gel (EWGs) during in vitro gastric digestion. EWG samples (5 mm length cubes) underwent in vitro digestion by incubation in simulated gastric fluid at different time intervals for up to 240 min. The hardness was measured using a Texture Analyser; softening kinetics was fit to the Weibull model.
View Article and Find Full Text PDFThe role of biochemical and mechanical disintegration on β-carotene release from steamed sweet potatoes (SSP) and fried sweet potatoes (FSP) during in vitro gastric digestion was investigated. Results revealed that, in the absence of mechanical forces generated by the stomach, biochemical digestion did not have a great effect on the breakdown of cell walls within the sweet potato food matrix and the release of ß-carotene was similar in both SSP and FSP. Cell wall in the plant-food may act as a physical 'barrier' towards the action of gastric juice and to the release of nutrients into the gastric digesta.
View Article and Find Full Text PDFThe fundamental mechanisms of nutrient release from solid foods during gastric digestion consists of multiple elementary processes. These include the diffusion of gastric juice into the food matrix and its simultaneous enzymatic degradation and mechanical breakdown by the peristaltic activity of the stomach. Understanding the relative role of these key processes, in association with the composition and structure of foods, is of paramount importance for the design and manufacture of novel foods possessing specific target behavior within the body.
View Article and Find Full Text PDFThis study investigated the feasibility of using hyperspectral imaging (HSI) to characterize the diffusion of acid and water within food structures during gastric digestion. Two different sweet potatoes (steamed and fried) and egg white gel (pH5 and pH9 EWGs) structures were exposed to in vitro gastric digestion before scanning by HSI. Afterward, the moisture or acid present in the digested sample was analyzed for calibration purposes.
View Article and Find Full Text PDFFour different pigmented dark-red (red) and non-pigmented white basmati rice varieties were tested for their nutrient composition, glycemic index (GI), total phenolic content (TPC), total anthocyanin content (TAC) and antioxidant activity (AOA) at 10% and 100% polished levels. The red basmati had higher content of ash, protein, fat, TPC, TAC and AOA than white basmati. Red and white basmati varieties can be classified as low GI and medium GI rice, respectively.
View Article and Find Full Text PDF