Background: Minimally invasive molecular profiling using cell-free DNA (cfDNA) is increasingly important to the management of cancer patients; however, low sensitivity remains a major limitation, particularly for brain tumor patients. Transiently attenuating cfDNA clearance from the body-thereby, allowing more cfDNA to be sampled-has been proposed to improve the performance of liquid biopsy diagnostics. However, there is a paucity of clinical data on the effect of higher cfDNA recovery.
View Article and Find Full Text PDFBackground: Detection of minor DNA allele alterations is becoming increasingly important for early detection and monitoring of cancer. We describe a new method that uses ultraviolet light to eliminate wild-type DNA alleles and enables improved detection of minor genetic or epigenetic changes.
Methods: Pyrimidine-dependent UV-based minor-allele enrichment (PD-UVME) employed oligonucleotide probes that incorporated a UVA-sensitive 3-cyanovinylcarbazole (CNVK), placed directly opposite interrogated pyrimidines, such as thymine (T) or cytosine (C) in wild-type (WT) DNA.
J Control Release
June 2024
Background: Tracing patient-specific tumor mutations in cell-free DNA (cfDNA) for minimal residual disease (MRD) detection is promising but challenging. Assaying more mutations and cfDNA stands to improve MRD detection but requires highly accurate, efficient sequencing methods and proper calibration to prevent false detection with bespoke tests.
Methods: MAESTRO (Minor Allele Enriched Sequencing Through Recognition Oligonucleotides) uses mutation-specific oligonucleotide probes to enrich cfDNA libraries for tumor mutations and enable their accurate detection with minimal sequencing.