Publications by authors named "G M London"

Stable azaheterocyclic derivatives of pentalene have been reported by the group of Hafner in the 1970s. However, these structures remained of low interest until recently, when they started to be investigated in the context of organic light-emitting diodes' (OLEDs') development. Herein, we revisit the synthesis of stable azapentalene derivative 1,3-bis(dimethylamino)-2-azapentalene and further explore its properties both computationally and experimentally.

View Article and Find Full Text PDF

Interoception is one of the pivotal cognitive functions for mechanisms of our body awareness, and malfunction of the interoceptive network is thought to be associated with mental illness, including addiction. Within addictive disorders, substance-based and non-substance-based addictions are known to hold dissociable reward systems. However, little is known about how interoceptive awareness between these addiction sub-types would differ.

View Article and Find Full Text PDF

Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally.

View Article and Find Full Text PDF

A hybrid molecular switch comprising salicylideneaniline (SA) and dithienylethene (DTE) moieties around a single benzene ring is reported. Due to an interplay between solvent-assisted enol-keto tautomerization in the former moiety and photochromic electrocyclization in the latter, this dithienylbenzene derivative was found to be photoresponsive at room temperature with a thermally stable closed form. The main photoproduct featuring ring-closed DTE and keto-enamine SA structures could be isolated and converted back to the starting material by irradiation with visible light.

View Article and Find Full Text PDF