Publications by authors named "G M Lipkind"

The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region.

View Article and Find Full Text PDF

Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115.

View Article and Find Full Text PDF

Verapamil is a prototypical phenylalkylamine (PAA), and it was the first calcium channel blocker to be used clinically. It tonically blocks L-type channels in the inner pore with micromolar affinity, and its affinity increases at depolarized membrane potentials. In T-type calcium channels, verapamil blocks with micromolar affinity and has modestly increased affinity at depolarized potentials.

View Article and Find Full Text PDF

Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules.

View Article and Find Full Text PDF

Class I cardiac antiarrhythmic drugs, for example, lidocaine, mexiletine, flecainide, quinidine, and procainamide, continue to play an important role in the therapy for cardiac arrhythmias because of the presence of use-dependent block. Lidocaine, as well as related drugs such as mepivacaine, bupivacaine, and cocaine, also belong to the class of medications referred to as local anesthetics. In this review, we will consider lidocaine as the prototypical antiarrhythmic drug because it continues to be widely used both as an antiarrhythmic drug (first used as an antiarrhythmic drug in 1950) as well as a local anesthetic agent.

View Article and Find Full Text PDF