A complex cascade of solid-state processes initiated by variation of temperature was found for the heterospin complex [Cu(hfac)2L(Me/Et)] formed in the reaction of copper(II) hexafluoroacetylacetonate [Cu(hfac)2] with stable nitronyl nitroxide 2-(1-methyl-3-ethyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (L(Me/Et)). The cooling of the compound below 260 K initiated a solid-state chemical reaction, which led to a depolymerization of chains and formation of a pair heterospin complex [Cu(hfac)2L(Me/Et)2][[Cu(hfac)2]3L(Me/Et)2]. Further decrease in temperature below 144 K led to a spin transition accompanied by a drastic decrease in the effective magnetic moment from 2.
View Article and Find Full Text PDFIn the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer.
View Article and Find Full Text PDFMol Divers
August 2010
N-(1-Aryl-2-polychloroethyl)arenesulfonamides obtained on the basis of N,N-dichlorosulfoamides and polychloroethenes or phenylacetylene undergo a reaction cascade in the presence of mercaptoethanol. The reaction cascade opens a new route to the series of cyclic or open-chain sulfonamide derivatives. The process includes cyclization to aziridine intermediates, their further recyclization, and isomerization to imidoylchlorides or chloroimines, followed by substitution or reduction under the action of mercaptoethanol or hydrolysis.
View Article and Find Full Text PDFExperimental measurements and second-order polarization propagator approach (SOPPA) calculations of (77)Se-(1)H spin-spin coupling constants together with theoretical energy-based conformational analysis in the series of 2-substituted selenophenes have been carried out. A new basis set optimized for the calculation of (77)Se-(1)H spin-spin coupling constants has been introduced by extending the aug-cc-pVTZ-J basis for selenium. Most of the spin-spin coupling constants under study, especially vicinal (77)Se-(1)H couplings, demonstrated a remarkable stereochemical behavior with respect to the internal rotation of the substituent in the 2-position of the selenophene ring, which is of major importance in the stereochemical studies of the related organoselenium compounds.
View Article and Find Full Text PDFBridging pyrrole and selenophene chemistries: Molecular assemblies have been developed that allow scrutiny of the electronic communication between pyrrole and selenophene nuclei. Divergent syntheses of 2-(selenophen-2-yl)pyrroles and their N-vinyl derivatives from available 2-acylselenophenes and acetylenes in a one-pot procedure have been devised (see scheme), which provide access to these exotic heterocyclic ensembles.The divergent syntheses of 2-(selenophen-2-yl)pyrroles and their N-vinyl derivatives from available 2-acylselenophenes and acetylenes in a one-pot procedure make these exotic heterocyclic ensembles accessible.
View Article and Find Full Text PDF