Publications by authors named "G M Leskowitz"

A novel Li quantitative NMR (qNMR) method to analyze lithium was developed to determine the lithium content in real brine samples using benchtop NMR instruments. The method was validated, and limits of detection and quantification of 40 and 100 ppm, respectively, were determined. Linearity, precision, and bias were also experimentally determined, and the results are presented herein.

View Article and Find Full Text PDF

We report use of dynamic nuclear magnetic resonance (NMR) to measure the amide rotational barrier in isonicotinamide. A significant challenge to obtaining good transition rates from dynamic NMR data is suppression of errors due to inherent line widths associated with transverse relaxation. We address this challenge with a fitting procedure that incorporates transverse relaxation over the temperature range of interest simply and reliably.

View Article and Find Full Text PDF

We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy.

View Article and Find Full Text PDF

We detail the uniform-sign cross-peak double-quantum-filtered correlation spectroscopy (UC2QF COSY) experiment, a new through-bond correlation method for disordered solids. This experiment is a refocused version of the popular double-quantum-filtered correlation spectroscopy experiment in liquids. Its key feature is that it provides in-phase and doubly absorptive line shapes, which renders it robust for chemical shift correlation in solids.

View Article and Find Full Text PDF

A novel method of nuclear magnetic resonance (NMR) is described which promises to be preferable to known general methods at sample length scales below approximately 100 microm. Its advantages stem from the seemingly paradoxical combination of a homogeneous static magnetic field and detection of a mechanical force between a spin-bearing sample and a magnet assembly. In contrast to other methods of force-detected nuclear magnetic resonance (FDNMR), the method is characterized by better observation of magnetization, enhanced resolution, and no gradient (BOOMERANG), and it is generally applicable with respect to sample composition, pulse sequence, and magnetic field strength.

View Article and Find Full Text PDF