We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2009
Our quasielastic neutron-scattering experiments and molecular-dynamics simulations probing surface water on rutile (TiO2) have demonstrated that a sufficiently high hydration level is a prerequisite for the temperature-dependent crossover in the nanosecond dynamics of hydration water. Below the monolayer coverage of mobile surface water, a weak temperature dependence of the relaxation times with no apparent crossover is observed. We associate the dynamic crossover with interlayer jumps of the mobile water molecules, which become possible only at a sufficiently high hydration level.
View Article and Find Full Text PDFWe report the first direct transition from a paramagnetic and paraelectric phase to an incommensurate multiferroic in the triangular lattice antiferromagnet RbFe(MoO4)(2). Ferroelectricity is observed only when the magnetic structure has chirality and breaks inversion symmetry. A Landau expansion of symmetry-allowed terms in the free energy demonstrates that chiral magnetic order can give rise to a pseudoelectric field, whose temperature dependence agrees with experiment.
View Article and Find Full Text PDFWe report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below TN=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and nonordered Co ions.
View Article and Find Full Text PDFFrustrated systems are ubiquitous, and they are interesting because their behaviour is difficult to predict; frustration can lead to macroscopic degeneracies and qualitatively new states of matter. Magnetic systems offer good examples in the form of spin lattices, where all interactions between spins cannot be simultaneously satisfied. Here we report how unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr(2)O(4).
View Article and Find Full Text PDF