Publications by authors named "G M GONCHARUK"

A number of thioether-containing zirconium siloxanes, differing in their composition and metal atom shielding degree with a siloxy substituent, were synthesized and characterized. Synthesis of such compounds made it possible to evaluate the effect of sulfur atoms' presence in the cured compositions on their dielectric properties, as well as to evaluate their curing ability and influence on mechanical characteristics compared to the sulfur-free analogs obtained earlier. Studying a wide range of compositions differing in their content and ratio of metallosiloxane and silica components revealed that such systems are still typical dielectrics.

View Article and Find Full Text PDF

In this paper, we suggest a previously unknown template-directed polymerization strategy for producing graphene/polymer aerogels with elevated mechanical properties, preservation of the nanoscale pore structure, an extraordinary crystallite structure, as well as tunable electrical and hydrophobic properties. The suggested approach is studied using the reduced graphene oxide (rGO)/ultrahigh molecular weight polyethylene (UHMWPE) system as an example. We also develop a novel method of ethylene polymerization with formation of UHMWPE directly on the surface of rGO sheets prestructured as the aerogel template.

View Article and Find Full Text PDF

This work is devoted to the formation and study of polymer composites with a segregated structure filled with single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), and their mixtures. For the first time, polymer composites with a segregated structure filled with rGO/SWCNTs mixtures were obtained. A copolymer of vinylidene fluoride and tetrafluoroethylene (P(VDF-TFE)) was used as a polymer matrix.

View Article and Find Full Text PDF

In this work, the results of investigation of the effect of polymer composite melts electrical conductance increase with time are presented. The conductance time dependencies were obtained for composites based on polypropylene filled with carbon nanoparticles of different types. The dependencies were analyzed to demonstrate the possibility of correlation of the conductance kinetics with different composite parameters, such as the filler geometry.

View Article and Find Full Text PDF

The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites.

View Article and Find Full Text PDF