Background: Cardiac remodelling, a crucial aspect of heart failure, is commonly investigated in preclinical models by quantifying cardiomyocyte cross-sectional area (CSA) and microvascular density (MVD) via histological methods, such as immunohistochemistry. To achieve this, optimized protocols are needed, and the species specificity is dependent on the antibody used. Lectin histochemistry offers several advantages compared to antibody-based immunohistochemistry, including as cost-effectiveness and cross-species applicability.
View Article and Find Full Text PDFBackground And Purpose: MicroRNA (miRNA) therapy is a promising approach to induce cardioprotection. We have previously identified cardiac microRNA-125b* (microRNA-125b-2-3p; miR-125b*) as a potential cardioprotective miRNA, termed ProtectomiR. We aimed to characterize the pharmacokinetics and pharmacodynamics, and the effect of miR-125b* mimic on infarct size using an in vivo mouse model.
View Article and Find Full Text PDFHypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC.
View Article and Find Full Text PDF