Spatial control of RhoGTPase-inactivating GAP components remains largely enigmatic. We describe a brain-specific RhoGAP splice variant, BARGIN (BGIN), which comprises a combination of BAR, GAP, and partial CIN phosphatase domains spliced from adjacent SH3BP1 and CIN gene loci. Excision of BGIN exon 2 results in recoding of a 42-amino acid N-terminal stretch.
View Article and Find Full Text PDFThe exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear.
View Article and Find Full Text PDFCell motility requires the spatial and temporal coordination of forces in the actomyosin cytoskeleton with extracellular adhesion. The biochemical mechanism that coordinates filamentous actin (F-actin) assembly, myosin contractility, adhesion dynamics, and motility to maintain the balance between adhesion and contraction remains unknown. In this paper, we show that p21-activated kinases (Paks), downstream effectors of the small guanosine triphosphatases Rac and Cdc42, biochemically couple leading-edge actin dynamics to focal adhesion (FA) dynamics.
View Article and Find Full Text PDF