Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums.
View Article and Find Full Text PDFBiocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.
View Article and Find Full Text PDFBackground: Septic cardiomyopathy increases mortality by 70% to 90% and results in mechanical dysfunction of cells.
Methods: Here, we created a LPS-induced in-vitro sepsis model with mouse embryonic stem cell-derived cardiomyocytes (mESC-CM) using the CellDrum technology which simultaneously measures mechanical compliance and beat frequency of mESCs. Visualization of reactive oxygen species (ROS), actin stress fibers, and mRNA quantification of endothelial protein C receptor (EPCR) and protease-activated receptor 1 (PAR1) before/after LPS incubation were used for method validation.
Background/aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology.
Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer.
J Biomater Appl
September 2017
To restore damaged organ function or to investigate organ mechanisms, it is necessary to prepare replicates that follow the biological role model as faithfully as possible. The interdisciplinary field of tissue engineering has great potential in regenerative medicine and might overcome negative side effects in the replacement of damaged organs. In particular, tubular organ structures of the genitourinary tract, such as the ureter and urethra, are challenging because of their complexity and special milieu that gives rise to incrustation, inflammation and stricture formation.
View Article and Find Full Text PDF