Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.
View Article and Find Full Text PDFA key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm.
View Article and Find Full Text PDFLactide is one of the most popular and promising monomers for the synthesis of biocompatible and biodegradable polylactide and its copolymers. The goal of this work was to carry out a full cycle of polylactide production from lactic acid. Process conditions and ratios of reagents were optimized, and the key properties of the synthesized polymers were investigated.
View Article and Find Full Text PDFThe production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects.
View Article and Find Full Text PDFPost-consumer poly(ethylene terephthalate) (PET) waste disposal is an important task of modern industry, and the development of new PET-based value added products and methods for their production is one of the ways to solve it. Membranes for various purposes, in this regard are such products. The aim of the review, on the one hand, is to systematize the known methods of processing PET and copolyesters, highlighting their advantages and disadvantages and, on the other hand, to show what valuable membrane products could be obtained, and in what areas of the economy they can be used.
View Article and Find Full Text PDF