Bacteria have developed numerous protection strategies to ensure survival in harsh environments, with perhaps the most robust method being the formation of a protective biofilm. In biofilms, bacterial cells are embedded within a matrix that is composed of a complex mixture of polysaccharides, proteins, and DNA. The gram-positive bacterium Bacillus subtilis has become a model organism for studying regulatory networks directing biofilm formation.
View Article and Find Full Text PDFThe rise of drug-resistant bacterial infections coupled with decreasing antibiotic efficacy poses a significant challenge to global health care. Acinetobacter baumannii is an insidious, emerging bacterial pathogen responsible for severe nosocomial infections aided by its ability to form biofilms. The response regulator BfmR, from the BfmR/S two-component system, is the master regulator of biofilm initiation in A.
View Article and Find Full Text PDF2-Aminoimidazole (2-AI)-based compounds have been shown to efficiently disrupt biofilm formation, disperse existing biofilms, and resensitize numerous multidrug-resistant bacteria to antibiotics. Using and , we provide initial pharmacological studies regarding the application of a 2-AI as a topical adjuvant for persistent dermal infections. In vitro assays indicated that the 2-AI is nonbactericidal, resensitizes bacteria to antibiotics, does not harm the integument, and promotes wound healing.
View Article and Find Full Text PDFAcinetobacter baumannii has quickly become one of the most insidious and prevalent nosocomial infections. Recently, the reverse-amide class of 2-aminoimidazole compounds (RA-2AI) was found both to prevent A. baumannii biofilm formation and also to disperse preexisting formations, putatively through interactions with cytosolic response regulators.
View Article and Find Full Text PDF