J Pharm Sci
April 2012
ELND006 is a novel gamma secretase inhibitor previously under investigation for the oral treatment of Alzheimer's disease. ELND006 shows poor solubility and has moderate to high permeability, suggesting it is a Biopharmaceutics Classification System Class II compound. The poor absolute oral bioavailability of the compound in fasted dogs (F ∼11%) is attributed to poor aqueous solubility.
View Article and Find Full Text PDFA significant percentage of active pharmaceutical ingredients identified through discovery screening programs is poorly soluble in water. These molecules are often difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues, e.g.
View Article and Find Full Text PDFThe purpose of the present study was to investigate oral bioavailability of an immediate release tablet containing wet-milled crystals of a poorly water-soluble drug, cilostazol, and to establish in vitro-in vivo correlation. Sub-micron sized cilostazol (median diameter: 0.26 microm) was successfully prepared using a beads-mill in water in the presence of a hydrophilic polymer and an anionic surfactant.
View Article and Find Full Text PDFMore than 40% of compounds identified through combinatorial screening programs are poorly soluble in water. These molecules are difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues. Formulating these compounds as pure drug nanoparticles is one of the newer drug-delivery strategies applied to this class of molecules.
View Article and Find Full Text PDFThe purpose of the present study was to investigate the effects of particle size on the dissolution and oral absorption of cilostazol. Three types of suspensions having different particle size distributions were prepared of the hammer-milled, the jet-milled cilostazol crystals and the NanoCrystal spray-dried powder of cilostazol. In vitro dissolution rate of cilostazol was significantly increased by reducing the particle size.
View Article and Find Full Text PDF