Proc Natl Acad Sci U S A
September 2024
Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution.
View Article and Find Full Text PDFVat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry.
View Article and Find Full Text PDFTo date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process.
View Article and Find Full Text PDFIn additive manufacturing, it is imperative to increase print speeds, use higher-viscosity resins, and print with multiple different resins simultaneously. To this end, we introduce a previously unexplored ultraviolet-based photopolymerization three-dimensional printing process. The method exploits a continuous liquid interface-the dead zone-mechanically fed with resin at elevated pressures through microfluidic channels dynamically created and integral to the growing part.
View Article and Find Full Text PDF