All cells are commonly exposed to DNA double-strand breaks (DSBs), which must be properly repaired to avoid genomic instability. Break-Induced Replication (BIR) is a Homologous Recombination subpathway, which repairs DSBs resulting in mutagenesis, chromosome translocations and loss of heterozygosity. In budding yeast, the Srs2 DNA helicase/translocase plays both anti- and pro-recombination roles.
View Article and Find Full Text PDFSenataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes.
View Article and Find Full Text PDFReplication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetics, genomics, and transmission electron microscopy, we find that Rrm3 and Sen1 helicases assist termination at TERs; Sen1 specifically acts at telomeres.
View Article and Find Full Text PDFUncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions.
View Article and Find Full Text PDFRNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases.
View Article and Find Full Text PDF