Publications by authors named "G Lewin"

Gina Lewin works in the field of microbial ecology, with a focus on the human microbiota. In this mSphere of Influence article, she reflects on how two papers describing bacterial single-cell RNA-seq-"Prokaryotic single-cell RNA sequencing by combinatorial indexing" by S. B.

View Article and Find Full Text PDF
Article Synopsis
  • Reproducibility is crucial in science as it boosts confidence in findings and enables comparison of data, yet evaluating it can be challenging, especially with RNA sequencing (RNA-seq) where multiple steps can introduce variance.
  • This study specifically examines the reproducibility of gene expression data from bacteria in cystic fibrosis models, utilizing samples from three labs and different sequencing pipelines to draw comparisons.
  • The results indicate high reproducibility of gene expression across labs, despite some variance introduced by different sequencing methods, with both pipelines detecting over 80% of the same differentially expressed genes, confirming the validity of RNA-seq data comparisons.
View Article and Find Full Text PDF

The ECHA's work aims to establish uniform procedures for the authorization or restriction of the use of chemicals in the European Union. Studies conducted in accordance with OECD Guideline 443, in which, among others, the evaluation of pituitary and thyroid hormones and fertility under high-dose exposure are used as read-out parameters. Since 2022, ECHA has been compiling such extended one-generation reproductive toxicity (EOGRT) study data and publishing its assessments with regard to design, study conduct and toxicological results.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how interactions between two oral bacteria affect their resilience to environmental changes and competition from other microbes, using a biofilm model.
  • It was found that one bacterium's ability to utilize L-lactate improved its fitness in co-culture but didn't significantly help resist environmental stress, and its catabolism could even be harmful under antibiotic conditions.
  • While one bacterium produced HO, which negatively affected both species, it also provided a protective effect against antibiotics, showing that microbial interactions can significantly impact community health depending on the environment.
View Article and Find Full Text PDF

Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host.

View Article and Find Full Text PDF