Plant fibres are increasingly used as reinforcements, especially in thermoplastic composites. Understanding the impact of temperature on the properties of these fibres is an important issue for the manufacturing of high-performance materials with minimal defects. In this work, the structural evolution and mechanical behaviour of flax fibre cell walls were dynamically monitored by temperature-controlled X-ray diffraction and nanoindentation from 25 to 230 °C; detailed biochemical analysis was also conducted on fibre samples after each heating step.
View Article and Find Full Text PDFThe incorporation of fly ash in polybutyl succinate (PBS) and polybutyl adipate terephtalate (PBAT) in the partial replacement of ammonium polyphosphate and/or melamine polyphosphate is evaluated in the present work. Furthermore, the influence of the surface modification of fly ash with two silanes and titanate coupling agents was also studied. Cone calorimeter experiments, pyrolysis combustion flow calorimeters (PCFCs), and UL94V tests were used to assess the fire performance of the composites.
View Article and Find Full Text PDFElectric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e.
View Article and Find Full Text PDFChromate is a toxic contaminant of potential concern, as it is quite soluble in the alkaline pH range and could be released to the environment. In cementitous systems, CrO4(2−) is thought to be incorporated as a solid solution with SO4(2−) in ettringite. The formation of a solid solution (SS) could lower the soluble CrO4(2−) concentrations.
View Article and Find Full Text PDFThe applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7-14.
View Article and Find Full Text PDF