This review aimed to assess the scope of the literature on tracking the microbial community of biofilms, focusing on the dairy farm and processing environments. The majority of studies focused on either production, storage, transport or processing of milk, while 5 combined the investigation of both production and processing facilities. Factors influencing short-term changes in dairy microbiota such as the occurrence of mastitis and season were distinguished from factors revealed through long-term studies, such as feed and weather, rather than the milking equipment.
View Article and Find Full Text PDFWe describe the identification of a candidate positron emission tomography (PET) imaging agent for the NLRP3 protein. NLRP3 plays a critical role in the immune system and has proven a difficult target for the development of imaging agents due to its low and cell-specific expression profile. A recently described series of pyridazine-based inhibitors, with improved permeability and brain-penetration properties, was used as a starting point for the development of a suitable PET imaging agent.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers.
View Article and Find Full Text PDFIL-17, a pro-inflammatory cytokine produced mainly by Th17 cells, is involved in the immune response to fungal and bacterial infections, whereas its aberrant production is associated with autoimmune and inflammatory diseases. IL-17 blocking antibodies like secukinumab (Cosentyx) have been developed and are used to treat conditions like psoriasis, psoriatic arthritis, and ankylosing spondylitis. Recently, the low molecular weight IL-17 inhibitor LY3509754 entered the clinic but was discontinued in Phase 1 due to adverse effects.
View Article and Find Full Text PDFMilk residue and the accompanying biofilm accumulation in milking systems can compromise the microbial quality of milk and the downstream processes of cheese production. Over a six-month study, the microbial ecosystems of milk ( = 24), tap water ( = 24) and environmental swabs ( = 384) were cultured by plating decimal dilutions to obtain viable counts of total aerobic mesophilic lactose-utilizing bacteria (lactose-M17), lactic acid bacteria (MRS), yeasts and molds (Yeast, Glucose, Chloramphenicol (YGC) medium). Viable aerobic lactose-M17 plate counts of milk remained well below 4.
View Article and Find Full Text PDF