This paper highlights and honors the connectivity among protistan researchers, using my own research journey as a backdrop, with attention to the supply chain of ideas, supporters, and other influencers who helped to shape and guide my career by sharing their ideas, protocols, skills, and enthusiasm. In looking back at the journey, the supply chain in my career has also included changes in the conceptual framework for my research studies, converging with a continuous flow of ideas and support from colleagues and mentors. To illustrate the complex map of ideas and supporters, this paper will examine technological advances, paradigm shifts in ecological constructs, geographical considerations, breakthroughs in peritrich biology, and the importance of an integrated perspective as we navigate the changing realities of today's scientific challenges.
View Article and Find Full Text PDFDisentangling biodiversity and community assembly effects on ecosystem function has always been an important topic in ecological research. The development and application of a DNA metabarcoding method has fundamentally changed the way we describe prokaryotic communities and estimate biodiversity. Compared to prokaryotes (bacteria and archaea), the eukaryotic microbes (unicellular eukaryotes) also fulfill extremely important ecological functions in different ecosystems regarding their intermediate trophic positions.
View Article and Find Full Text PDFMicroorganisms are diverse and play key roles in lake ecosystems, therefore, a robust estimation of their biodiversity and community structure is crucial for determining their ecological roles in lakes. Conventionally, molecular surveys of microorganisms in lakes are primarily based on equidistant sampling. However, this sampling strategy overlooks the effects of environmental heterogeneity and trophic status in lake ecosystems, which might result in inaccurate biodiversity assessments of microorganisms.
View Article and Find Full Text PDFFullerene's low water solubility was a serious challenge to researchers aiming to harness their excellent photochemical properties for aqueous applications. Cationic functionalization of the fullerene cage provided the most effective approach to increase water solubility, but common synthesis practices inadvertently complicated the photochemistry of these systems by introducing iodide as a counterion. This problem was overlooked until recent work noted a potentiation effect which occurred when photosensitizers were used to inactivate microorganisms with added potassium iodide.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2022