Publications by authors named "G Laicher"

In this work, we investigate (3)He magnetic resonance imaging as a noninvasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25 U/100 g body wt of porcine pancreatic elastase dissolved in 200 microl saline. Rats were then paired with saline-dosed controls.

View Article and Find Full Text PDF

High sensitivity makes hyperpolarized (3)He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.

View Article and Find Full Text PDF

In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al.

View Article and Find Full Text PDF

The response of the NMR relaxation times (T(1), CPMG T(2), and Hahn T(2)) to bleomycin-induced lung injury was studied in excised, unperfused rat lungs. NMR, histologic, and biochemical (collagen content measurement) analyses were performed 1, 2, 4, and 8 weeks after intratracheal instillation of saline (control lungs) or 10 U/kg bleomycin sulfate. The control lungs showed no important NMR, water content, histologic, or collagen content changes.

View Article and Find Full Text PDF

The effects of endotoxin injury on lung NMR relaxation times (T1, CPMG T2, and Hahn decay constant (Hahn T2)) were studied in excised unperfused rat lungs. Blinded histologic examination showed no clear-cut separation between endotoxin and control lungs. Morphometric lung tissue volume density and gravimetric lung water content did not differ significantly between the two groups.

View Article and Find Full Text PDF