When considering regenerative approaches, the efficient creation of a functional vasculature, that can support the metabolic needs of bioengineered tissues, is essential for their survival after implantation. However, it is widely recognized that the post-implantation microenvironment of the engineered tissues is often hypoxic due to insufficient vascularization, resulting in ischemia injury and necrosis. This is one of the main limitations of current tissue engineering applications aiming at replacing significant tissue volumes.
View Article and Find Full Text PDFCell-assembled extracellular matrix (CAM) has been used to produce vascular grafts. While these completely biological vascular grafts performed well in clinical trials, the in vivo remodeling and inflammatory response of this truly "bio" material has not yet been investigated. In this study, human CAM yarns were implanted subcutaneously in nude rats to investigate the innate immune response to this matrix.
View Article and Find Full Text PDFG-quadruplex ligands exert their antiproliferative effects through telomere-dependent and telomere-independent mechanisms, but the inter-relationships among autophagy, cell growth arrest and cell death induced by these ligands remain largely unexplored. Here, we demonstrate that the G-quadruplex ligand 20A causes growth arrest of cancer cells in culture and in a HeLa cell xenografted mouse model. This response is associated with the induction of senescence and apoptosis.
View Article and Find Full Text PDF