Here we describe scattering based signal suppression artifacts encountered while developing multiplex lateral flow (LF) immunoassay using surface enhanced Raman spectroscopy (SERS) "nanotags" as analyte labels. Using these SERS nanotags, we have produced a quantitative test for inflammation biomarkers that is transferable to the point of care (POC). The SERS assay shows similar performance when compared with a fluorescent nanoparticle POC test.
View Article and Find Full Text PDFIn this study we describe a novel method of sampling and quantifying wound biomarkers for clinical settings. We believe the chosen format will allow rapid assessments of wound healing and provide biomarker evidence-based decision points for treatment of the wound at the time of presentation. The wound monitoring principle uses a proprietary sample collection tool (a thermally reversible hydrogel) to sample and isolate biomarkers within a wound environment without further sample extraction/preparation steps.
View Article and Find Full Text PDFSynthetic polymers and colloids are increasingly being exploited in bioassays to help measure gene expression, sequence genomes, monitor metabolic disorders and detect the presence of disease. This can be attributed to their potential to reduce reaction scales, improve throughput, lower costs and improve the sensitivity, selectivity, stability and reproducibility of assays. This review highlights the newest application areas, including some of the strategies employed, as well as major technical challenges and future opportunities.
View Article and Find Full Text PDFDNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost.
View Article and Find Full Text PDFBackground: Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements.
View Article and Find Full Text PDF