Publications by authors named "G L Rockswold"

Emergency medical diseases (EMDs) are the leading cause of death worldwide. A time-to-death analysis is needed to accurately identify the risks and describe the pattern of an EMD because the mortality rate can peak early and then decline. Dose-ranging Phase II clinical trials are essential for developing new therapies for EMDs.

View Article and Find Full Text PDF

The Glasgow outcome scale-extended (GOS-E), an ordinal scale measure, is often selected as the endpoint for clinical trials of traumatic brain injury (TBI). Traditionally, GOS-E is analyzed as a fixed dichotomy with favorable outcome defined as GOS-E ≥ 5 and unfavorable outcome as GOS-E < 5. More recent studies have defined favorable vs unfavorable outcome utilizing a sliding dichotomy of the GOS-E that defines a favorable outcome as better than a subject's predicted prognosis at baseline.

View Article and Find Full Text PDF

Studies that investigate the performance of prognostic and predictive biomarkers are commonplace in medicine. Evaluating the performance of biomarkers is challenging in traumatic brain injury (TBI) and other conditions when both the time factor (i.e.

View Article and Find Full Text PDF

The Glasgow Outcome Scale-Extended (GOS-E), an ordinal scale measuring global outcome, is used commonly as the primary outcome measure in clinical trials of traumatic brain injury. Analysis is often based on a dichotomization and thus has inherent statistical limitations, including loss of information related to the collapse of adjacent categories. A fixed dichotomization defines favorable outcome consistently for all subjects, whereas a sliding dichotomy tailors the definition of favorable outcome according to baseline prognosis/severity.

View Article and Find Full Text PDF

A primary goal of a phase II dose-ranging trial is to identify a correct dose before moving forward to a phase III confirmatory trial. A correct dose is one that is actually better than control. A popular model in phase II is an independent model that puts no structure on the dose-response relationship.

View Article and Find Full Text PDF