Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays.
View Article and Find Full Text PDFWilderness Environ Med
September 2020
Introduction: The potential efficacy of selected plant extracts to counteract the dermal toxicity of jellyfish envenomation was investigated using an in vitro cell culture model.
Methods: We studied plant extracts from Carica papaya, Ananas comosus, and Bouvardia ternifolia, known for their antivenom properties, in pairwise combinations with tissue homogenates of the jellyfish Pelagia noctiluca, Phyllorhiza punctata, and Cassiopea andromeda, to evaluate modulations of jellyfish cytotoxic effects. L929 mouse fibroblasts were incubated with pairwise jellyfish/plant extract combinations and examined by MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide).
Natural substances produced by venomous marine organisms are thought to be possible sources of useful compounds and new drugs having the potential to open new ways for pharmacology, nutrition and environmental applications. In this framework, cnidarians are very interesting being widely distributed and all are venomous organisms; so, a deep knowledge of their occurrence, morphology of venomous structures and of effects of venoms at cellular level is fundamental to evaluate the possible utilization of venomous compounds or extracts. In this research, the morphology and occurrence of nematocysts in two cnidarian species (Aurelia aurita, Velella velella), and the preliminary evaluation of the cytotoxicity of V.
View Article and Find Full Text PDFBackground: Rhythmic contraction and autonomous movement play a key role in the predation, production and displacement of jellyfish.
Methods: Four independent body parts of the jellyfish Aurelia coerulea, including Bell, Tentacle, Oral arm and Gastric pouch were extracted and have been carried out a compared proteomics by liquid chromatography-mass spectrometry/mass-spectrometry (LC-MS/MS). ResultsA total of 13,429 peptides and 1916 proteins with molecular weights in the range of 10.