Publications by authors named "G L Hager"

While the cohesin complex is a key player in genome architecture, how it localizes to specific chromatin sites is not understood. Recently, we and others have proposed that direct interactions with transcription factors lead to the localization of the cohesin-loader complex (NIPBL/MAU2) within enhancers. Here, we identify two clusters of LxxLL motifs within the NIPBL sequence that regulate NIPBL dynamics, interactome, and NIPBL-dependent transcriptional programs.

View Article and Find Full Text PDF

The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor.

View Article and Find Full Text PDF

Accurate, unbiased, and reproducible assessment of skill is a vital resource for surgeons throughout their career. The objective in this research is to develop and validate algorithms for video-based assessment of intraoperative surgical skill. Algorithms to classify surgical video into expert or novice categories provide a summative assessment of skill, which is useful for evaluating surgeons at discrete time points in their training or certification of surgeons.

View Article and Find Full Text PDF

The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the steroid receptor subfamily of nuclear receptors. Their main function is to act as ligand-activated transcription factors, transducing the effects of corticosteroid hormones (aldosterone and glucocorticoids) by modulating gene expression. Corticosteroid signaling is essential for homeostasis and adaptation to different forms of stress.

View Article and Find Full Text PDF

Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis.

View Article and Find Full Text PDF