Publications by authors named "G Kuwajima"

Prostaglandin (PG) D2 elicits responses through either the DP1 and/or DP2 receptor. Experimental evidence suggests that stimulation of the DP1 receptor contributes to allergic responses, such that antagonists are considered to be directed therapies for allergic diseases. In this study, we demonstrate the activity of a novel synthetic DP1 receptor antagonist termed asapiprant (S-555739) for the DP1 receptor and other receptors in vitro, and assess the efficacy of asapiprant in several animal models of allergic diseases.

View Article and Find Full Text PDF

To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partially dependent on L-type voltage-dependent Ca2+ channels (VDCCs) and metabotropic glutamate receptors (mGluRs).

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated how mutations in the extracellular part of the TrkB receptor affect its ability to bind to brain-derived neurotrophic factor (BDNF).
  • The deletion mutant TrkBDelta4 retained binding activities even with significant portions of its extracellular region removed, suggesting it can function similarly to the wild-type TrkB receptor.
  • Results indicate that only the carboxyl-terminal half of the extracellular section of TrkB, specifically the Ig2 domain, is crucial for maintaining BDNF receptor functionality.
View Article and Find Full Text PDF

N-copine is a novel two C2 domain protein that shows Ca2(+)-dependent phospholipid binding and membrane association. By using yeast two-hybrid assays, we identified OS-9 as a protein capable of interacting with N-copine. We further revealed that the second C2 domain of N-copine bound with the carboxy-terminal region of OS-9.

View Article and Find Full Text PDF

N-Copine is a novel protein with two C2 domains. Its expression is brain specific and up-regulated by neuronal activity such as kainate stimulation and tetanus stimulation evoking hippocampal CA1 long-term potentiation. We examined the localization and subcellular distribution of N-copine in mouse brain.

View Article and Find Full Text PDF