We propose heat machines that are nonlinear, coherent, and closed systems composed of few field (oscillator) modes. Their thermal-state input is transformed by nonlinear Kerr interactions into nonthermal (non-Gaussian) output with controlled quantum fluctuations and the capacity to deliver work in a chosen mode. These machines can provide an output with strongly reduced phase and amplitude uncertainty that may be useful for sensing or communications in the quantum domain.
View Article and Find Full Text PDFOur goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider, taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy, the rapport of work and information extraction is found and the cost of information erasure is allowed for.
View Article and Find Full Text PDFThe quantum Zeno and anti-Zeno paradigms have thus far addressed the evolution control of a quantum system coupled to an immutable bath via non-selective measurements performed at appropriate intervals. We fundamentally modify these paradigms by introducing, theoretically and experimentally, the concept of controlling the bath state via selective measurements of the system (a qubit). We show that at intervals corresponding to the anti-Zeno regime of the system-bath exchange, a sequence of measurements has strongly correlated outcomes.
View Article and Find Full Text PDFWe experimentally demonstrate, for the first time, noise diagnostics by repeated quantum measurements, establishing the ability of a single photon subjected to random polarization noise to diagnose non-Markovian temporal correlations of such a noise process. Both the noise spectrum and temporal correlations are diagnosed by probing the photon with frequent (partially) selective polarization measurements. We show that noise with positive temporal correlations corresponds to our single photon undergoing a dynamical regime enabled by the quantum Zeno effect (QZE), whereas noise characterized by negative (anti) correlations corresponds to regimes associated with the anti-Zeno effect (AZE).
View Article and Find Full Text PDFThe consensus regarding quantum measurements rests on two statements: (i) von Neumann's standard quantum measurement theory leaves undetermined the basis in which observables are measured, and (ii) the environmental decoherence of the measuring device (the "meter") unambiguously determines the measuring ("pointer") basis. The latter statement means that the environment (measures) observables of the meter and (indirectly) of the system. Equivalently, a measured quantum state must end up in one of the "pointer states" that persist in the presence of the environment.
View Article and Find Full Text PDF