Theoretical and numerical models of active Janus particles commonly assume that the metallo-dielectric interface is parallel to the driving applied electric field. However, our experimental observations indicate that the equilibrium angle of orientation of electrokinetically driven Janus particles varies as a function of the frequency and voltage of the applied electric field. Here, we quantify the variation of the orientation with respect to the electric field and demonstrate that the equilibrium position represents the interplay between gravitational, electrostatic and electrohydrodynamic torques.
View Article and Find Full Text PDFHypothesis: The interaction of active particles with walls can explain discrepancies between experiments and theory derived for particles in the bulk. For an electric field driven metallodielectric Janus particle (JP) adjacent to an electrode, interaction between the asymmetric particle and the partially screened electrode yields a net electrostatic force - termed self-dielectrophoresis (sDEP) - that competes with induced-charge electrophoresis (ICEP) to reverse particle direction.
Experiments: The potential contribution of hydrodynamic flow to the reversal is evaluated by visualizing flow around a translating particle via micro-particle image velocimetry and chemically suppressing ICEP with poly(l-lysine)-g-poly(ethylene glycol) (PLL-PEG).
Recent studies on electrically powered active particles that can both self-propel and manipulate cargo load and release, have focused on both spherically shaped Janus particles (JP) and on a parallel electrically conducting plates setup. Yet, spherically shaped JPs set a geometrical limitation on the ability to smartly design multiple dielectrophoretic traps on a single active particle. Herein, these active carriers are extended to accommodate any desired shape and selective metallic coating, using a standard photolithography method.
View Article and Find Full Text PDFWe demonstrate a method of concentrating and patterning of biological cells on a chip, exploiting the confluence of electric and thermal fields, without necessitating the use of any external heating or illuminating sources. The technique simply employs two parallel plate electrodes and an insulating layer over the bottom electrode, with a drilled insulating layer for inducing localized variations in the thermal field. A strong induced electric field, in the process, penetrates through the narrow hole and generates highly nonuniform heating, which in turn, results in gradients in electrical properties and induces mobile charges to impose directional fluid flow.
View Article and Find Full Text PDFWe explore a simple strategy of generating strong rotating flow in a stationary surface-droplet, using an intricate interplay of local electrical and thermal fields. Wire electrodes are employed to generate on-spot heating without necessitating any elaborate micro-fabrication, which causes strong local gradients in electrical properties to induce mobile charges into the droplet. Applying a low voltage (∼10 V), strong rotational velocity of the order of mm/s can be achieved in the system, within the standard operating ranges of operating and geometrical parameters.
View Article and Find Full Text PDF