Background: With declining kidney function and therefore increasing plasma oxalate, patients with primary hyperoxaluria type I (PHI) are at risk to systemically deposit calcium-oxalate crystals. This systemic oxalosis may occur even at early stages of chronic kidney failure (CKD) but is difficult to detect with non-invasive imaging procedures.
Methods: We tested if magnetic resonance imaging (MRI) is sensitive to detect oxalate deposition in bone.
Objective: Robust dynamic contrast-enhanced T1-weighted images are crucial for accurate detection and categorization of focal liver lesions in liver/abdominal magnetic resonance imaging (MRI). As optimal dynamic imaging usually requires multiple breath-holds, its inherent susceptibility to motion artifacts frequently results in degraded image quality in incompliant patients. Because free-breathing imaging may overcome this drawback, the intention of this study was to evaluate a dynamic MRI sequence acquired during free breathing using the variable density, elliptical centric golden angle radial stack-of-stars radial sampling scheme, which so far has not been implemented in 4-dimensional applications.
View Article and Find Full Text PDF