Stroke is the leading cause of adult disability in the United States. To date there is no satisfactory treatment for stroke once neuronal damage has occurred. Human adult bone marrow-derived somatic cells (hABM-SC) represent a homogenous population of CD49c/CD90 co-positive, non-hematopoietic cells that have been shown to secrete therapeutically relevant trophic factors and to support axonal growth in a rodent model of spinal cord injury.
View Article and Find Full Text PDFThis study evaluates functional recovery after transplanting human bone marrow-derived stromal cells (BMSCs) into contusion models of spinal cord injury (SCI). The authors used a high-throughput process to expand BMSCs and characterized them by flow cytometry, ELISA, and gene expression. They found that BMSCs secrete neurotrophic factors and cytokines with therapeutic potential for cell survival and axon growth.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are typically enriched from bone marrow via isolation of the plastic adherent, fibroblastoid cell fraction. However, plastic adherent cultures elaborated from murine bone marrow are an admixture of fibroblastoid and hematopoietic cell types. Here we report a reliable method based on immunodepletion to fractionate fibroblastoid cells from hematopoietic cells within plastic adherent murine marrow cultures.
View Article and Find Full Text PDFObjective: To examine the mechanism by which the Arg-->Cys 519 mutation causes the clinical phenotype employing transgenic mice that express the mutated human COL2A1.
Methods: A DNA construct under the control of a COL2A1 specific promoter was prepared from genomic DNA isolated from fibroblasts from the proband with primary generalized osteoarthritis (OA) associated with a mild chondrodysplasia. Transgenic mice were obtained by injection of the constructs into pro-nuclei of fertilized eggs from the FVB/N inbred mouse strain.
Mesenchymal stem cells (MSCs) isolated from the bone marrow of adult organisms are capable of differentiating into adipocytes, chondrocytes, myoblasts, osteoblasts, and hematopoiesis-supporting stroma. We recently demonstrated that MSCs also adopt glial cell fates when transplanted into the developing central nervous system and hence can produce tissue elements derived from a separate embryonic layer. Despite these remarkable properties, it has been difficult to establish specific criteria to characterize MSCs.
View Article and Find Full Text PDF