Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n = 4x = 40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n = 2x = 20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A.
View Article and Find Full Text PDFThe ecological mechanisms that contribute to the acquisition of genetic diversity in an expanding population of the shrub, Myrica cerifera, on an island habitat were investigated. Genealogical reconstruction was used to assess the contribution of early reproductive colonists to subsequent recruitment. In addition, through determination of parentage, the source of recruiting seedlings was identified and the contribution of seed and pollen dispersal into the colonizing sites was inferred.
View Article and Find Full Text PDFThe cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSP) are the most abundant heat stress-induced proteins in plants. In rice, there are at least seven members of class-I sHSP. A 1.
View Article and Find Full Text PDF