Publications by authors named "G Klemperer"

The effects of serosal substitution of isosmotic Na2SO4-Ringer solution for NaCl-Ringer solution were studied in the short-circuited frog skin (Rana pipiens, Northern variety). Despite prompt changes of transepithelial measurements, initial cellular effects were slight. After 30 to 45 min, however, the transcellular current had decreased and the cell electrical potential had depolarized, in association with decrease of the apical membrane fractional resistance and basolateral membrane conductance.

View Article and Find Full Text PDF

In the isolated bullfrog cornea epithelium, under short-circuit conditions the regulation of the K permeability of the basolateral membrane was studied with conventional and K-selective microelectrodes in Cl-free Ringers. In Cl-free Ringers, the transcellular current is less than 1 microA/cm2, allowing estimation of the basolateral membrane electromotive force from measurements of the membrane voltage (Vsc). The apparent basolateral membrane K conductance was determined from measurements of the effects of single ion substitutions of K for Na on the Vsc.

View Article and Find Full Text PDF

Cell Na activity, acNa, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and Na-selective microelectrodes. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular conductance, with NaNO3, Ringer on the apical surface. Under control conditions acNa averaged 8 +/- 2 mM (n = 9, SD).

View Article and Find Full Text PDF

In studies of apical membrane current-voltage relationships, in order to avoid laborious intracellular microelectrode techniques, tight epithelia are commonly exposed to high serosal K concentrations. This approach depends on the assumptions that high serosal K reduces the basolateral membrane resistance and potential to insignificantly low levels, so that transepithelial values can be attributed to the apical membrane. We have here examined the validity of these assumptions in frog skins (Rana pipiens pipiens).

View Article and Find Full Text PDF

Cell K activity, acK, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30-60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.

View Article and Find Full Text PDF