There is in vitro evidence that sorting nexin family member 27 (SNX27), a member of the retromer complex, changes the distribution of the amyloid-beta (Aβ) precursor protein (APP) to promote its recycling and thereby prevent the production of Aβ, the toxic protein associated with Alzheimer's disease (AD). In this study, we analyzed the phenotype of the familial AD APP/PS mouse strain lacking one copy of the SNX27 gene. The reduction in SNX27 expression had no significant effect on the in vivo accumulation of soluble, total, or plaque-deposited Aβ, which is overproduced by the familial APP/PS transgenes.
View Article and Find Full Text PDFSorting nexin 27 (SNX27) recycles PSD-95, Dlg1, ZO-1 (PDZ) domain-interacting membrane proteins and is essential to sustain adequate brain functions. Here we define a fundamental SNX27 function in T lymphocytes controlling antigen-induced transcriptional activation and metabolic reprogramming. SNX27 limits the activation of diacylglycerol (DAG)-based signals through its high affinity PDZ-interacting cargo DAG kinase ζ (DGKζ).
View Article and Find Full Text PDFThe parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex.
View Article and Find Full Text PDFRetromer is a trimeric complex composed of Vps26, Vps29, and Vps35 and has been shown to be involved in trafficking and sorting of transmembrane proteins within the endosome. The Vps26 paralog, Vps26B, defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. Although endosomally associated, Vps26B-retromer does not bind the established retromer transmembrane cargo protein, cation-independent mannose 6-phosphate receptor (CI-M6PR), indicating it has a distinct role to retromer containing the Vps26A paralog.
View Article and Find Full Text PDFSorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes.
View Article and Find Full Text PDF