Background: Predicting the length of stay in advance will not only benefit the hospitals both clinically and financially but enable healthcare providers to better decision-making for improved quality of care. More importantly, understanding the length of stay of severe patients who require general anesthesia is key to enhancing health outcomes.
Objective: Here, we aim to discover how machine learning can support resource allocation management and decision-making resulting from the length of stay prediction.
Loop diuretics are prevailing drugs to manage fluid overload in heart failure. However, adjusting to loop diuretic doses is strenuous due to the lack of a diuretic guideline. Accordingly, we developed a novel clinician decision support system for adjusting loop diuretics dosage with a Long Short-Term Memory (LSTM) algorithm using time-series EMRs.
View Article and Find Full Text PDFMinerva Pediatr (Torino)
October 2024