We provided strong proof of concept evidence that somatostatin mediates potent analgesic and anti-inflammatory actions via its receptor subtype 4 (sst) located both at the periphery and the central nervous system. Therefore, sst agonists are promising novel drug candidates for neuropathic pain and neurogenic inflammation, but rational drug design was not possible due to the lack of knowledge about its 3-dimensional structure. We modeled the sst receptor structure, described its agonist binding properties, and characterized the binding of our novel small molecule sst agonists (4-phenetylamino-7H-pyrrolo[2,3-d]pyrimidine derivatives) using an in silico platform.
View Article and Find Full Text PDFTargeted therapies against cancer types with more than one driver gene hold bright but elusive promise, since approved drugs are not available for all driver mutations and monotherapies often result in resistance. Targeting multiple driver genes in different pathways at the same time may provide an impact extensive enough to fight resistance. Our goal was to find synergistic drug combinations based on the availability of targeted drugs and their biological activity profiles and created an associated compound library based on driver gene-related protein targets.
View Article and Find Full Text PDFInfluenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins.
View Article and Find Full Text PDFPancreatic cancer is an increasing cause of cancer related death worldwide. KRAS is the dominant oncogene in this cancer type and molecular rationale would indicate, that inhibitors of the downstream target MEK could be appropriate targeted agents, but clinical trials have failed so far to achieve statistically significant benefit in unselected patients. We aimed to identify predictive molecular biomarkers that can help to define subgroups where MEK inhibitors might be beneficial alone or in combination.
View Article and Find Full Text PDFKinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells.
View Article and Find Full Text PDF