Publications by authors named "G Kember"

Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown.

View Article and Find Full Text PDF

Neural control of the heart involves continuous modulation of cardiac mechanical and electrical activity to meet the organism's demand for blood flow. The closed-loop control scheme consists of interconnected neural networks with central and peripheral components working cooperatively with each other. These components have evolved to cooperate control of various aspects of cardiac function, which produce measurable "functional" outputs such as heart rate and blood pressure.

View Article and Find Full Text PDF

Cardiopulmonary sympathetic control is exerted via stellate ganglia (SG); however, little is known about how neuronal firing patterns in the stellate ganglion relate to dynamic physiological function in the heart and lungs. We performed continuous extracellular recordings from SG neurons using multielectrode arrays in chloralose-anesthetized pigs ( = 6) for 8-9 h. Respiratory and left ventricular pressures (RP and LVP, respectively) and the electrocardiogram (ECG) were recorded concomitantly.

View Article and Find Full Text PDF

An original asymptotic method is developed and used to find closed-form approximations to the symmetric thin-film three- and multi-layer plasmonic dispersion equations. Closed-form analysis of three-layer metal-insulator-metal (MIM: "M" is metal and "I" is insulator) and IMI devices shows a complementary physics underpinning their properties. Analysis of multi-layer symmetric devices, considered for a seven-layer MIMIMIM example, uncovers a remarkable departure from the physics governing MIM and IMI features.

View Article and Find Full Text PDF

The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system.

View Article and Find Full Text PDF