Publications by authors named "G Kalosakas"

In this work, we employ molecular dynamics simulations with semi-empirical interatomic potentials to explore heat dissipation in Janus transition metal dichalcogenides (JTMDs). The middle atomic layer is composed of either molybdenum (Mo) or tungsten (W) atoms, and the top and bottom atomic layers consist of sulfur (S) and selenium (Se) atoms, respectively. Various nanomaterials have been investigated, including both pristine JTMDs and nanostructures incorporating inner triangular regions with a composition distinct from the outer bulk material.

View Article and Find Full Text PDF

The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release t as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: t=(1/12)⋅(L/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant.

View Article and Find Full Text PDF

In conjugated polymeric drug delivery systems, both the covalent bond degradation rate and the diffusion of the freely moving drug particles affect the release profile of the formulation. Using Monte Carlo simulations in spherical matrices, the release kinetics resulting from the competition between the reaction and diffusion processes is discussed. For different values of the relative bond cleavage rate, varied over four orders of magnitude, the evolution of (i) the number of bonded drug molecules, (ii) the fraction of the freely moved detached drug within the polymer matrix, and (iii) the resulting fractional release of the drug is presented.

View Article and Find Full Text PDF

Understanding the inherent timescales of large bubbles in DNA is critical to a thorough comprehension of its physicochemical characteristics, as well as their potential role on helix opening and biological function. In this work, we employ the coarse-grained Peyrard-Bishop-Dauxois model of DNA to study relaxation dynamics of large bubbles in homopolymer DNA, using simulations up to the microsecond time scale. By studying energy autocorrelation functions of relatively large bubbles inserted into thermalised DNA molecules, we extract characteristic relaxation times from the equilibration process for both adenine-thymine (AT) and guanine-cytosine (GC) homopolymers.

View Article and Find Full Text PDF

The potential use of graphene in various strain engineering applications requires an accurate characterization of its properties when the material is under different mechanical loads. In this work, we present the strain dependence of the geometrical characteristics at the atomic level and the Raman active G-band evolution in a uniaxially strained graphene monolayer, using density functional theory methods as well as molecular dynamics atomistic simulations for strains that extend up to the structural failure. The bond length and bond angle variations with strain, applied either along the zigzag or along the armchair direction, are discussed and analytical relations describing this dependence are provided.

View Article and Find Full Text PDF