The increased metastatic ability of small-cell lung cancer (SCLC) necessitates the identification of new prognostic biomarkers for clinical evaluation during the disease course. Our previous research highlighted the clinical relevance of transcription factor JunB (JUNB), C-X-C chemokine receptor type 4 (CXCR4), and programmed cell death 1 ligand 1 (PD-L1) in breast and non-small cell lung cancer (NSCLC) patients. In the current study, we examined these biomarkers in circulating tumor cells (CTCs) and plasma-derived exosomes from 100 treatment-naïve SCLC patients.
View Article and Find Full Text PDFUnlabelled: Circulating tumor cells (CTCs) captured from the bloodstream of patients with solid tumors have the potential to accelerate precision oncology by providing insight into tumor biology, disease progression and response to treatment. However, their potential is hampered by the lack of standardized CTC enrichment platforms across tumor types. EpCAM-based CTC enrichment, the most commonly used platform, is limited by EpCAM downregulation during metastasis and the low EpCAM expression in certain tumor types, including the highly prevalent and lethal NSCLC.
View Article and Find Full Text PDFPrevious publications have shown that STIM1, ORAI1, and KDM2B, are implicated in Ca signaling and are highly expressed in various cancer subtypes including prostate cancer. They play multiple roles in cancer cell migration, invasion, and metastasis. In the current study we investigated the expression of the above biomarkers in circulating tumor cells from patients with metastatic prostate cancer.
View Article and Find Full Text PDFKDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca, regulated by the pore-forming proteins ORAI and the Ca sensing stromal interaction molecules (STIM), via store-operated Ca entry (SOCE) in wild-type DU-145.
View Article and Find Full Text PDF