Publications by authors named "G Kakavelakis"

This study points out the importance of the templating effect in hybrid organic-inorganic perovskite semiconductors grown on graphene. By combining two achiral materials, we report the formation of a chiral composite heterostructure with electronic band splitting. The effect is observed through circularly polarized light emission and detection in a graphene/α-CH(NH)PbI perovskite composite, at ambient temperature and without a magnetic field.

View Article and Find Full Text PDF

In this work we study in-depth the antireflection and filtering properties of ultrathin-metal-film-based transparent electrodes (MTEs) integrated in thin-film solar cells. Based on numerical optimization of the MTE design and the experimental characterization of thin-film perovskite solar cell (PSC) samples, we show that reflection in the visible spectrum can be strongly suppressed, in contrast to common belief (due to the compact metal layer). The optical loss of the optimized electrode (~ 2.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have emerged as a frontrunner semiconductor technology for application in third generation photovoltaics while simultaneously making significant strides in other areas of optoelectronics. Photodetectors are one of the latest additions in an expanding list of applications of this fascinating family of materials. The extensive range of possible inorganic and hybrid perovskites coupled with their processing versatility and ability to convert external stimuli into easily measurable optical/electrical signals makes them an auspicious sensing element even for the high-energy domain of the electromagnetic spectrum.

View Article and Find Full Text PDF

Solution-processed, lead halide-based perovskite solar cells have recently overcome important challenges, offering low-cost and high solar power conversion efficiencies. However, they still undergo unoptimized light collection due mainly to the thin (∼350 nm) polycrystalline absorber layers. Moreover, their high toxicity (due to the presence of lead in perovskite crystalline structures) makes it necessary that the thickness of the absorber layers to be further reduced.

View Article and Find Full Text PDF

Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate.

View Article and Find Full Text PDF