Introduction: Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles.
View Article and Find Full Text PDFThe limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, a first-in-class peptide-based radiotracer, [Ga]Ga-AJ206, is developed that can be seamlessly integrated into the standard clinical workflow and is specifically designed to noninvasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). A bicyclic peptide, AJ206, is synthesized and exhibits high affinity to CD38 (K: 19.
View Article and Find Full Text PDFBackground: Combination therapies that aim to improve the clinical efficacy to immune checkpoint inhibitors have led to the need for non-invasive and early pharmacodynamic biomarkers. Positron emission tomography (PET) is a promising non-invasive approach to monitoring target dynamics, and programmed death-ligand 1 (PD-L1) expression is a central component in cancer immunotherapy strategies. [F]DK222, a peptide-based PD-L1 imaging agent, was investigated in this study using humanized mouse models to explore the relationship between PD-L1 expression and therapy-induced changes in cancer.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA)-based low-molecular-weight agents using beta(β)-particle-emitting radiopharmaceuticals is a new treatment paradigm for patients with metastatic castration-resistant prostate cancer. Although results have been encouraging, there is a need to improve the tumor residence time of current PSMA-based radiotherapeutics. Albumin-binding moieties have been used strategically to enhance the tumor uptake and retention of existing PSMA-based investigational agents.
View Article and Find Full Text PDFPurpose: The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, we developed [68Ga]Ga-AJ206, a peptide-based radiotracer that can be seamlessly integrated into the standard clinical workflow and is specifically designed to non-invasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET).
Experimental Design: We synthesized a high-affinity binder for quantification of CD38 levels.