Antimony(V) mobility in acid mine drainage (AMD) is often controlled by sorption and coprecipitation with schwertmannite - a poorly-ordered Fe(III) oxyhydroxysulfate mineral. However, due to its metastable nature, schwertmannite transforms over time to more thermodynamically stable Fe(III) phases, such as goethite. This study examines how transformation of Sb(V)-bearing schwertmannite to goethite impacts Sb(V) mobility, while also assessing the role that Sb(V) may play in stabilizing schwertmannite against such transformation.
View Article and Find Full Text PDFWe investigated the mechanisms that control Sb(V) sorption and coprecipitation with ferrihydrite across a range of Sb(V) loadings, and examined the associated effects on Sb(V) extractability during the commonly-applied 1 M HCl extraction scheme and the BCR and Wenzel sequential extraction schemes. EXAFS spectroscopy reveals that Sb(V) sorption and coprecipitation mainly involved Sb(V) incorporation into the ferrihydrite structure via edge sharing and double-corner sharing between SbO and FeO octahedra. Large amounts of these linkages partially stabilized ferrihydrite against extraction with 1 M HCl.
View Article and Find Full Text PDFSchwertmannite is a poorly-crystalline Fe(III) oxyhydroxysulfate mineral that may control Sb(V) mobility in acid sulfate environments, including acid mine drainage and acid sulfate soils. However, the mechanisms that govern uptake of aqueous Sb(V) by schwertmannite in such environments are poorly understood. To address this issue, we examined Sb(V) sorption to schwertmannite across a range of environmentally-relevant Sb(V) loadings at pH 3 in sulfate-rich solutions.
View Article and Find Full Text PDFThis study examines incorporation of Sb(V) into schwertmannite─an Fe(III) oxyhydroxysulfate mineral that can be an important Sb host phase in acidic environments. Schwertmannite was synthesized from solutions containing a range of Sb(V)/Fe(III) ratios, and the resulting solids were investigated using geochemical analysis, powder X-ray diffraction (XRD), dissolution kinetic experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Shell-fitting and wavelet transform analyses of Sb K-edge EXAFS data, together with congruent Sb and Fe release during schwertmannite dissolution, indicate that schwertmannite incorporates Sb(V) via heterovalent substitution for Fe(III).
View Article and Find Full Text PDF