Hydrogels are usually depicted as a homogenous polymer block with a distinct surface. While defects in the polymer structure are looked into frequently, structural irregularities on the hydrogel surface are often neglected. In this work, thin hydrogel layers of ≈100 nm thickness (nanogels) are synthesized and characterized for their structural irregularities, as they represent the surface of macrogels.
View Article and Find Full Text PDFDue to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge.
View Article and Find Full Text PDFDipeptides can be self-assembled via non-covalent bonds towards functional nanostructures for diverse applications in nanotechnology. Here, we introduce a convenient microfluidics-guided dipeptide design as a platform for photodegradation of contaminants in water. Titanium dioxide (TiO) nanoparticles (NPs) are chosen as photocatalysts due to their vastly studied properties.
View Article and Find Full Text PDFThree-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix).
View Article and Find Full Text PDF