Publications by authors named "G Jobst"

A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B (AFB), fumonisin B (FB) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates.

View Article and Find Full Text PDF

A silicon-based miniaturized sensor chip combined with an advanced microfluidic module for the simultaneous, label-free immunochemical determination of four allergens, bovine milk protein, peanut protein, soy protein, and gliadin, is presented. The sensor chip consists of an array of 10 broad-band Mach-Zehnder interferometers (BB-MZIs) monolithically integrated on silicon, along with their respective broad-band light sources. The BB-MZIs were biofunctionalized with the targeted allergens and their responses during immunoreaction were monitored by multiplexing their transmission spectra through an external miniaturized spectrometer.

View Article and Find Full Text PDF

The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor.

View Article and Find Full Text PDF

The fast and efficient detection of foodborne pathogens is a societal priority, given the large number of food-poisoning outbreaks, and a scientific and technological challenge, given the need to detect as little as 1 viable cell in 25 gr of food. Here, we present the first approach that achieves the above goal, thanks to the use of a micro/nano-technology and the detection capability of acoustic wave sensors. Starting from 1 Salmonella cell in 25 ml of milk, we employ immuno-magnetic beads to capture cells after only 3 h of pre-enrichment and subsequently demonstrate efficient DNA amplification using the Loop Mediated Isothermal Amplification method (LAMP) and acoustic detection in an integrated platform, within an additional ½ h.

View Article and Find Full Text PDF

The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave.

View Article and Find Full Text PDF