Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid . Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band.
View Article and Find Full Text PDFR Soc Open Sci
September 2024
A free-swimming larval stage features in many marine invertebrate life cycles. To transition to a seafloor-dwelling juvenile stage, larvae need to settle out of the plankton, guided by specific environmental cues that lead them to an ideal habitat for their future life on the seafloor. Although the marine annelid has been cultured in research laboratories since the 1950s and has a free-swimming larval stage, specific environmental cues that induce settlement in this nereid worm are yet to be identified.
View Article and Find Full Text PDFNeuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone and created a library of 64 peptides derived from 33 precursors.
View Article and Find Full Text PDFGene regulatory networks (GRNs) fulfill the essential function of maintaining the stability of cellular differentiation states by sustaining lineage-specific gene expression, while driving the progression of development. However, accounting for the relative stability of intermediate differentiation stages and their divergent trajectories remains a major challenge for models of developmental biology. Here, we develop an empirical data-based associative GRN model (AGRN) in which regulatory networks store multilineage stage-specific gene expression profiles as associative memory patterns.
View Article and Find Full Text PDF