Healthy aging is characterized by frontal and diffuse brain changes, while certain age-related pathologies such as semantic dementia will be associated with more focal brain lesions, particularly in the temporo-parietal regions. These changes in structural integrity could influence functional brain networks. Here we use multilayer brain network analysis on structural (DWI) and functional (fMRI) data in younger and older healthy individuals and patients with semantic dementia.
View Article and Find Full Text PDFBrain structure and function are intimately linked, however this association remains poorly understood and the complexity of this relationship has remained understudied. Healthy aging is characterised by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional (magnetoencephalography) data from the Cam-CAN database.
View Article and Find Full Text PDFAging is associated with cognitive changes, with strong variations across individuals. One way to characterize this individual variability is to use techniques such as magnetoencephalography (MEG) to measure the dynamics of neural synchronization between brain regions, and the variability of this connectivity over time. Indeed, few studies have focused on fluctuations in the dynamics of brain networks over time and their evolution with age.
View Article and Find Full Text PDFCognitive reserve and resilience refer to the set of processes allowing the preservation of cognitive performance in the presence of structural and functional brain changes. Investigations of these concepts have provided unique insights into the heterogeneity of cognitive and brain changes associated with aging. Previous work mainly relied on methods benefiting from a high spatial precision but a low temporal resolution, and thus the temporal brain dynamics underlying these concepts remains poorly known.
View Article and Find Full Text PDF