ACS Appl Mater Interfaces
September 2024
Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes.
View Article and Find Full Text PDFIn this work, we report on the efficiency of single InGaN/GaN quantum wells (QWs) grown on thin (<1 µm) GaN buffer layers on silicon (111) substrates exhibiting very high threading dislocation (TD) densities. Despite this high defect density, we show that QW emission efficiency significantly increases upon the insertion of an In-containing underlayer, whose role is to prevent the introduction of point defects during the growth of InGaN QWs. Hence, we demonstrate that point defects play a key role in limiting InGaN QW efficiency, even in samples where their density (2-3 × 109 cm-2) is much lower than that of TD (2-3 × 1010 cm-2).
View Article and Find Full Text PDFIn order to elucidate the mechanisms responsible for cathodoluminescence intensity variations at the scale of single InGaN/GaN nanowire heterostructures, a methodology is proposed based on a statistical analysis on ensembles of several hundreds of nanowires exhibiting a diameter of 180, 240 and 280 nm. For 180 nm diameter, we find that intensitiy variations are consistent with incorporation of point defects obeying Poisson's statistics. For wider diameters, intensity variations at the scale of single NWs are observed and assigned to local growth conditions fluctuations.
View Article and Find Full Text PDFMolecular beam epitaxy growth and optical properties of GaN quantum disks in AlN nanowires were investigated, with the purpose of controlling the emission wavelength of AlN nanowire-based light emitting diodes. Besides GaN quantum disks with a thickness ranging from 1 to 4 monolayers, a special attention was paid to incomplete GaN disks exhibiting lateral confinement. Their emission consists of sharp lines which extend down to 215 nm, in the vicinity of AlN band edge.
View Article and Find Full Text PDFThe optical properties of nanowire-based InGaN/GaN multiple quantum wells (MQWs) heterostructures grown by plasma-assisted molecular beam epitaxy are investigated. The beneficial effect of an InGaN underlayer grown below the active region is demonstrated and assigned to the trapping of point defects transferred from the pseudo-template to the active region. The influence of surface recombination is also investigated.
View Article and Find Full Text PDF