Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.
View Article and Find Full Text PDFWater is readily available nearly anywhere as vapor. Thus, atmospheric water harvesting (AWH) technologies are seen as a promising solution to support sustainable water production. This work reports a novel semi-interpenetrating network, which integrates poly(pyrrole) doped with a hygroscopic salt and 2D graphene-based nanosheets optimally assembled within an alginate matrix, capable of harvesting water from the atmosphere with a record intake of up to 7.
View Article and Find Full Text PDFThe isolation of a compound from a natural source involves many organic and mostly toxic solvents for extraction and purification. Natural deep eutectic solvents have been shown to be efficient options for the extraction of natural products. They have the advantage of being composed of abundantly available common primary metabolites, being nontoxic and environmentally safe solvents.
View Article and Find Full Text PDFNatural Deep Eutectic Solvents (NADES) are composed of supramolecular interactions of two or more natural compounds, such as organic acids, sugars, and amino acids, and they are being used as a new media alternative to conventional solvents. In this study, a new application of NADES is presented as a possible technology for biofilm structural breaker in complex systems since the current solvents used for biofilm cleaning and extraction of biofilm components use hazardous solutions. The NADES (betaine:urea:water and lactic acid:glucose:water) were analyzed before and after the biofilm treatment by attenuated total reflection Fourier-transform infrared spectroscopy and fluorescence excitation-emission matrix spectroscopy.
View Article and Find Full Text PDFSome medicines are poorly soluble in water. For tube feeding and parenteral administration, liquid formulations are required. The discovery of natural deep eutectic solvents (NADES) opened the way to potential applications for liquid drug formulations.
View Article and Find Full Text PDF