Publications by authors named "G J Wasserburg"

We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model.

View Article and Find Full Text PDF

The primary mineral assemblages and initial (26)Al/(27)Al ratios of rare calcium-aluminum-rich inclusions (CAIs) from enstatite (E) chondrites are similar to those of CAIs from other chondrite classes. CAIs from all chondrite classes formed under oxidizing conditions that are much different from the reducing conditions under which the E chondrites formed. Either CAIs formed at an earlier, more oxidizing epoch in the region where E chondrites ultimately formed, or they formed at a different place in the solar nebula and were transported into the E chondrite formation region.

View Article and Find Full Text PDF

We present a model to explain the wide range of abundances for heavy r-process elements (mass number A>130) at low [Fe/H]. This model requires rapid star formation and/or an initial population of supermassive stars in the earliest condensed clots of matter in order to provide a prompt or initial Fe inventory. Subsequent Fe and r-process enrichment was provided by two types of supernovae: one producing heavy r-elements with no Fe on a rather short timescale and the other producing light r-elements (A View Article and Find Full Text PDF

On the basis of anomalous isotopic compositions of oxygen and magnesium, 14 oxide grains from two primitive meteorites (Bishunpur and Semarkona) have been identified as circumstellar condensates. One corundum grain has a high 18O/16O ratio and isotopic compositions of magnesium, calcium, and titanium that are compatible with a formation in ejecta of a type II supernova that was about 15 times the mass of the sun. The other grains have oxygen, magnesium, and titanium compositions that are consistent with a formation around asymptotic giant branch (AGB) stars with a range of mass and initial composition.

View Article and Find Full Text PDF