Publications by authors named "G J Van Der Vusse"

Blood-borne fatty acids (Fa) are important substrates for energy conversion in the mammalian heart. After release from plasma albumin, Fa traverse the endothelium and the interstitial compartment to cross the sarcolemma prior to oxidation in the cardiomyocytal mitochondria. The aims of the present study were to elucidate the site with lowest Fa permeability (i.

View Article and Find Full Text PDF

Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer.

View Article and Find Full Text PDF

Background: Vascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis.

View Article and Find Full Text PDF

Cardiac studies on the uptake, storage and intramyocardial transfer of blood-borne substances require detailed information on the geometric ultrastructural dimensions of myocardial compartments and parts thereof, and the membranes separating these compartments. Such a specific ultrastructural set of data of the heart is yet lacking. In the present study, we quantitatively assessed these dimensions in glutaraldehyde-perfusion fixed rabbit hearts by means of histological and tailored mathematical techniques.

View Article and Find Full Text PDF